Cuprins
53 relaţii: Alhazen, American Mathematical Society, Axiomă, Bertrand Russell, Cambridge University Press, Chiralitate (matematică), Cinematică, Congruență (geometrie), Cuaternion, Curbură constantă, Dacă și numai dacă, Deplasare hiperbolică, Difeomorfism, Distanță euclidiană, Felix Klein, Formă, Formă pătratică, Funcție surjectivă, Geometrie, Geometrie diferențială, Geometrie eliptică, Geometrie hiperbolică, Geometrie sintetică, Giuseppe Peano, Grup (matematică), Grup de automorfisme, Grup de simetrie, Grup Lie, Interval (matematică), Izometrie, Listă de figuri geometrice, Metrică, Mișcare (fizică), Noțiune primitivă, Număr complex, Număr hipercomplex, Orientare (geometrie), Plan (geometrie), Reflexie (matematică), Reflexie translată, Rotație (matematică), Rotație improprie, Sistem de referință inerțial, Spațiu, Spațiu metric, Spațiu Minkowski, Spațiu-timp, Teoria grupurilor, Teoria relativității restrânse, Topologie, ... Extinde indicele (3 Mai Mult) »
Alhazen
Abu Ali al-Hasan Ibn Al-Haytham (în arabă, أبو علي الحسن بن الهيثم, latinizat, Alhazen) (n. 965 - d. 1039) a fost savant arab.
Vedea Deplasare (geometrie) și Alhazen
American Mathematical Society
American Mathematical Society (AMS) este o asociație de matematicieni profesioniști dedicați intereselor cercetării matematice și burselor și servește comunității naționale și internaționale prin publicațiile, întâlnirile, susținere și alte programe.
Vedea Deplasare (geometrie) și American Mathematical Society
Axiomă
Cuvântul axiomă este un cuvânt provenit din limba greacă veche, în care αξιωμα (axioma) înseamnă „care este socotit demn sau convenabil” sau „care este considerat evident prin sine însuși/de la sine”, „opinie”, „teză admisă”.
Vedea Deplasare (geometrie) și Axiomă
Bertrand Russell
Bertrand Arthur William Russell a fost un logician, filosof, matematician, istoric, eseist și critic social britanicStanford Encyclopedia of Philosophy,, 1 May 2003 În timpul vieții s-a declarat ca fiind liberal, socialist și pacifist, dar în același timp a admis că nu a fost cu adevărat niciunul dintre aceste lucruri.
Vedea Deplasare (geometrie) și Bertrand Russell
Cambridge University Press
Clădirea Pitt, sediul Cambridge University Press din Trumpington Street, Cambridge Cambridge University Press este editura Universității Cambridge.
Vedea Deplasare (geometrie) și Cambridge University Press
Chiralitate (matematică)
Contururile tălpilor ilustrează chiralitatea: formele din stânga și din dreapta sunt chirale (''enantiomorfe'') în plan, deoarece sunt imagini în oglindă, fără a avea ele însele simetrii în oglindă În geometrie, o figură este chirală (se spune că are chiralitate) dacă nu poate fi suprapusă peste imaginea sa în oglindă numai prin rotații și translații.
Vedea Deplasare (geometrie) și Chiralitate (matematică)
Cinematică
Cinematica (în lb. greacă, kinein, a se mișca) este o ramură a mecanicii clasice ce se ocupă cu studiul mișcării obiectelor fără a lua în considerație cauza ce duce la această mișcare.
Vedea Deplasare (geometrie) și Cinematică
Congruență (geometrie)
Congruența este o relație de echivalență între două figuri geometrice care au aceeași formă și mărime.
Vedea Deplasare (geometrie) și Congruență (geometrie)
Cuaternion
În matematică, cuaternionii, notați \mathbb H, sunt numere hipercomplexe non-comutative obținute prin extinderea mulțimii numerelor complexe de o manieră similară cu cea care a condus de la numerele reale la cele complexe.
Vedea Deplasare (geometrie) și Cuaternion
Curbură constantă
În matematică curbura constantă este un concept din geometria diferențială.
Vedea Deplasare (geometrie) și Curbură constantă
Dacă și numai dacă
În logică și domeniile conexe, ca matematică și filosofie, dacă și numai dacă este o expresie care se referă la un conector logic între propoziții cognitive în funcție de două condiții, care trebuie să fie ambele adevărate sau false.
Vedea Deplasare (geometrie) și Dacă și numai dacă
Deplasare hiperbolică
În geometrie deplasările hiperbolice sunt automorfisme izometrice ale unui spațiu hiperbolic.
Vedea Deplasare (geometrie) și Deplasare hiperbolică
Difeomorfism
În matematică, un difeomorfism este un izomorfism din categoria mulțimilor netede.
Vedea Deplasare (geometrie) și Difeomorfism
Distanță euclidiană
În matematică, distanța euclidiană sau metrica euclidiană este distanța „obișnuită” între două puncte, dată în coordonate carteziene de formula lui Pitagora.
Vedea Deplasare (geometrie) și Distanță euclidiană
Felix Klein
Felix Christian Klein a fost matematician german, cunoscut mai ales pentru contribuțiile sale în teoria grupurilor, analiza complexă, geometria non-euclidiană și conexiunile dintre acestea și geometrie.
Vedea Deplasare (geometrie) și Felix Klein
Formă
O jucărie pentru copii folosită pentru învățarea diverselor forme O formă sau figură este forma unui obiect sau a marginii sale exterioare, a conturului sau a suprafeței exterioare, spre deosebire de alte proprietăți precum culoare, textură sau tip de material.
Vedea Deplasare (geometrie) și Formă
Formă pătratică
Forma pătratică este o expresie algebrică polinom omogen de gradul doi într-un număr de variabile.
Vedea Deplasare (geometrie) și Formă pătratică
Funcție surjectivă
O funcție f:A\rightarrow B se numește surjectivă dacă oricare element al mulțimii de valori a funcției este imaginea prin funcție a unui element din domeniul funcției.
Vedea Deplasare (geometrie) și Funcție surjectivă
Geometrie
Geometria (din γεωμετρία; geo.
Vedea Deplasare (geometrie) și Geometrie
Geometrie diferențială
Geometria diferențială este o ramură a matematicii, care combină geometria analitică cu analiza matematică.
Vedea Deplasare (geometrie) și Geometrie diferențială
Geometrie eliptică
Geometria eliptică este un exemplu de geometrie în care postulatul paralelelor al lui Euclid nu este valabil.
Vedea Deplasare (geometrie) și Geometrie eliptică
Geometrie hiperbolică
unghiul de paralelism. Dreptele dintre ele la unghiuri mai mari ca ''θ'' sunt ''nesecante'' (dar nu ''paralele'' și ele). În matematică, geometria hiperbolică (numită și geometria lobacevskiană sau geometria Bolyai-Lobacevski) este o geometrie neeuclidiană, în care axioma (postulatul) paralelelor din geometria euclidiană este înlocuită.
Vedea Deplasare (geometrie) și Geometrie hiperbolică
Geometrie sintetică
Geometria sintetică este cea mai veche ramură a geometriei, care se sprijină în mod esențial pe desene geometrice și apelează preponderent în rezolvarea problemelor la construcții auxiliare care pot fi reduse la operații efectuate cu rigla și compasul, și la considerații vizuale sintetice.
Vedea Deplasare (geometrie) și Geometrie sintetică
Giuseppe Peano
Giuseppe Peano a fost un matematician italian, profesor la Universitatea din Torino, un fondator în logica matematică și în teoria mulțimilor și autor a peste 200 de articole și cărți de o mare valoare filosofică.
Vedea Deplasare (geometrie) și Giuseppe Peano
Grup (matematică)
cub Rubik formează un grup. În matematică, un grup este o mulțime prevăzută cu o operație binară care combină orice două elemente ale ei pentru a forma un al treilea element în așa fel încât sunt satisfăcute patru condiții, denumite axiomele grupurilor, și anume închiderea, asociativitatea, existența elementului neutru, respectiv a elementului simetric.
Vedea Deplasare (geometrie) și Grup (matematică)
Grup de automorfisme
În matematică grupul de automorfisme într-una din formele sale cele mai generale este definit în contextul teoriei categoriilor.
Vedea Deplasare (geometrie) și Grup de automorfisme
Grup de simetrie
permută tetraedru prin poziții. Cele 12 rotații formează '''grupul de''' '''rotație (simetrie)''' din figură. În teoria grupurilor, grupul de simetrie al unui obiect geometric este grupul tuturor transformărilor în raport cu care obiectul este, dotat cu operația de.
Vedea Deplasare (geometrie) și Grup de simetrie
Grup Lie
În matematică, un grup Lie (pronunțat) este un grup care este și, cu proprietatea că operația de grup și simetrica ei sunt diferențiabile.
Vedea Deplasare (geometrie) și Grup Lie
Interval (matematică)
Interval este un termen de bază al algebrei și analizei matematice.
Vedea Deplasare (geometrie) și Interval (matematică)
Izometrie
p.
Vedea Deplasare (geometrie) și Izometrie
Listă de figuri geometrice
Cubul Figurile geometrice sunt mulțimi nevide de puncte.
Vedea Deplasare (geometrie) și Listă de figuri geometrice
Metrică
3.
Vedea Deplasare (geometrie) și Metrică
Mișcare (fizică)
În fizică, mișcarea este schimbarea poziției unui obiect în timp.
Vedea Deplasare (geometrie) și Mișcare (fizică)
Noțiune primitivă
În matematică, logică, filosofie și sisteme formale o noțiune primitivă este o noțiune care nu este definit prin termeni definiți anterior.
Vedea Deplasare (geometrie) și Noțiune primitivă
Număr complex
În matematică, numerele complexe sunt numere introduse ca soluții ale ecuațiilor de forma x^2 + p.
Vedea Deplasare (geometrie) și Număr complex
Număr hipercomplex
Numerele hipercomplexe sunt obținute prin generalizarea construcției numerelor complexe pornind de la numerele reale.
Vedea Deplasare (geometrie) și Număr hipercomplex
Orientare (geometrie)
sistemului de referință atașat lui În geometrie orientarea, poziția unghiulară sau direcția unui obiect geometric, cum ar fi o dreaptă, un plan sau un corp sunt noțiuni care fac parte din descrierea situării acelui obiect în spațiul euclidian pe care îl ocupă.
Vedea Deplasare (geometrie) și Orientare (geometrie)
Plan (geometrie)
Reprezentarea grafică a unui plan geometric Trei plane paralele În geometrie un plan (pl. plane) este o suprafață bidimensională, cu curbură zero, nelimitată în orice direcție.
Vedea Deplasare (geometrie) și Plan (geometrie)
Reflexie (matematică)
translație egală cu dublul distanței dintre cele două axe În matematică, o reflexie este o aplicație sau transformare geometrică a unui spațiu euclidian pe el însuși, fiind o izometrie cu un hiperplan definit de un set de puncte fixe; acest set se numește axa (în bidimensional) sau planul (în tridimensional) de reflexie.
Vedea Deplasare (geometrie) și Reflexie (matematică)
Reflexie translată
Acțiunea unei reflexii translate este o compunere a unei reflexii și a unei translații paralele cu dreapta de reflexie Deoarece aceste urme de pași au simetrie de reflexie translată, operațiile de reflexie și translație vor aplica fiecare urmă din stânga pe o urmă din dreapta și fiecare urmă din dreapta pe una din stânga, ducând la o configurație finală care nu poate fi deosebită de original În geometria bidimensională, o reflexie translată este o operație de simetrie care constă dintr-o reflexie față de o dreaptă și o translație de-a lungul acelei drepte, combinate într-o singură operație.
Vedea Deplasare (geometrie) și Reflexie translată
Rotație (matematică)
figuri geometrice în plan în jurul unui punct, O În matematică o rotație este un concept care provine din geometrie.
Vedea Deplasare (geometrie) și Rotație (matematică)
Rotație improprie
În geometrie o rotație improprie sau rotoinversieLucian Ion,, Universitatea din București, 29 septembrie 2014, accesat 2022-02-12, p. 8 sau rotație cu inversie sau rotoreflexie sau rotație cu reflexie este o izometrie în spațiul euclidian care este o combinație între o rotație în jurul unei axe și o reflexie într-un plan perpendicular pe axa respectivă.
Vedea Deplasare (geometrie) și Rotație improprie
Sistem de referință inerțial
În fizică, un sistem de referință inerțial este un sistem de referință față de care este respectată prima lege a lui Newton: Orice corp își menține starea de repaus sau de mișcare rectilinie uniformă atât timp cât asupra sa nu acționează alte forțe sau suma forțelor care acționează asupra sa este nulă (principiul inerției).
Vedea Deplasare (geometrie) și Sistem de referință inerțial
Spațiu
În filozofie și fizică categoria spațiului exprimă ordinea, poziția, distanța, mărimea, forma și întinderea obiectelor coexistente în lumea reală.
Vedea Deplasare (geometrie) și Spațiu
Spațiu metric
În matematică, prin spațiu metric se înțelege orice mulțime X pe care este definită o funcție d:X\times X\to.
Vedea Deplasare (geometrie) și Spațiu metric
Spațiu Minkowski
Spațiul Minkowski (sau spațiul-timp Minkowski), numit după Hermann Minkowski, este spațiu în patru dimensiuni, contextul matematic în care se formulează cel mai convenabil teoria relativității restrânse.
Vedea Deplasare (geometrie) și Spațiu Minkowski
Spațiu-timp
Spațiu-timp este un model care combină spațiul tridimensional și timpul unidimensional într-o construcție numită continuul spațiu-timp, unde timpul joacă rolul celei de-a patra dimensiuni.
Vedea Deplasare (geometrie) și Spațiu-timp
Teoria grupurilor
3.
Vedea Deplasare (geometrie) și Teoria grupurilor
Teoria relativității restrânse
Relativitatea restrânsă (Teoria relativității restrânse sau teoria restrânsă a relativității), denumită ulterior teoria specială a relativității sau relativitatea specială, este teoria fizică a măsurării în sistemele de referință inerțiale propusă în 1905 de către Albert Einstein în articolul său Despre electrodinamica corpurilor în mișcare.
Vedea Deplasare (geometrie) și Teoria relativității restrânse
Topologie
Bandă Möbius, un obiect cu o singură suprafață și o singură muchie; astfel de forme sunt studiate în topologie. Topologia este o ramură a matematicii, mai precis o extensie a geometriei care studiază deformările spațiului prin transformări continue.
Vedea Deplasare (geometrie) și Topologie
Transformările lui Lorentz
right În fizică, transformările Lorentz fac conversia între două măsurători diferite, efectuate de doi observatori diferiți, asupra spațiului și timpului, atunci când un observator este în mișcare uniformă și rectilinie în raport cu celălalt.
Vedea Deplasare (geometrie) și Transformările lui Lorentz
Translație (geometrie)
În geometria euclidiană, o translație este o transformare geometrică care deplasează fiecare punct al unei figuri sau al unui spațiu cu aceeași distanță într-o direcție dată.
Vedea Deplasare (geometrie) și Translație (geometrie)
Varietate (geometrie)
hărți bidimensionale În matematică (mai ales în geometria diferențială și topologie), o varietate este un spațiu topologic, care la o scară destul de mică are proprietățile unui spațiu euclidian de o anumită dimensiune, numită dimensiunea varietății.
Vedea Deplasare (geometrie) și Varietate (geometrie)